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Abstract—The rising count and shrinking feature size of
transistors within modern computers is making them increasingly
vulnerable to various types of soft faults. This problem is
especially acute in high-performance computing (HPC) systems
used for scientific computing, because these systems include
many thousands of compute cores and nodes, all of which
may be utilized in a single large-scale run. The increasing
vulnerability of HPC applications to errors induced by soft
faults is motivating extensive work on techniques to make these
applications more resiilent to such faults, ranging from generic
techniques such as replication or checkpoint/restart to algorithm-
specific error detection and tolerance techniques. Effective use
of such techniques requires a detailed understanding of how
a given application is affected by soft faults to ensure that
(i) efforts to improve application resilience are spent in the
code regions most vulnerable to faults and (ii) the appropriate
resilience technique is applied to each code region. This paper
presents XRay, a tool to view the application vulnerability to soft
errors, and illustrates how XRay can be used in the context of a
representative application. In addition to providing actionable
insights into application behavior XRay automatically selects
the number of fault injection experiments required to provide
an informative view of application behavior, ensuring that the
information is statistically well-grounded without performing
unnecessary experiments.

I. INTRODUCTION

Soft faults in processor circuits can affect applications in
three major ways:

• Abnormal Termination: Program performs an erroneous
action that is detected by the hardware or operating
system and is aborted.

• Erroneous Result: Program runs to completion but pro-
duces erroneous results.

• Correct Result: Program runs to completion and outputs
the correct result, as if no error occurred.

To ensure that computers can be used reliably in spite
of soft faults it is necessary to make applications resilient
to their effects. This includes the design of new resilience
techniques and their effective deployment in individual appli-
cations. Since in most cases different application code regions
have different vulnerability properties and require different
resilience techniques the primary things that developers need
to understand are (i) how the source code location where a
given soft falult manifests as an error relates to the application
outcome (termination, erroneous result or correct result), and
(ii) whether different executions of the same code region are
affected differently by errors.

The XRay tool is designed to provide this information in an
accessible way. As illustrated in Figure 1, XRay performs a

fault injection campaign on the target application, executing ei-
ther the entire target application or an individual routine many
times on the same input and injecting the output of a randomly-
selected instruction within each run with a single bit flip. XRay
records the dynamic index of the injected instruction (the
number of instructions completed before the injected one), the
instruction’s location in the source code and the index of the
bit in the instruction’s output that is flipped. Further, it records
the result of the application, whether it aborted, completed
correctly or produced an erroneous output. The magnitude of
any result error is computed using an application-specific error
metric and also recorded. This information is then visualized to
relate the fault injection information to application outcomes.
XRay’s fault injection campaign is controlled by a tree-based
statistical regression model [1] that attempts to predict the
outcome of an injected error based on the above information
and keeps conducting more fault injection experiments until
the model determines that no more predictive accuracy can
be achieved based on these training features. Since this is the
point where XRay’s visualizations cannot grow more accurate
with more experiments, XRay’s fault injection campaign is
limited to this number of experiments.

Fig. 1. Overview of the XRay framework.

Given an application that needs to be made more resilient
XRay’s views are used to identify the code regions that are
the most vulnerable to soft faults based on the effects of
faults injected during the execution of these code regions
on application results. Once application developers implement
resilience techniques for critical application regions XRay can
be applied to the modified application to understand how the
improvements affect overall application resilience and whether
a given resilience technique is cost-effective.



This paper is organized as follows. Section II-A describes
our fault injection infrastructure and Section II-B discusses
the application used in our case study. Section III presents
the functionality of XRay in the context of our representa-
tive application, showing how XRay is used to identify the
application’s critical routines, its visualizations of the error
vulnerability of the original and resilient versions of these
routines and finally, how the use of resilience affects the
error vulnerability of the overall application. Section V then
details our algorithm for selecting the number of fault injection
experiments to use in our analysis.

II. EXPERIMENT SETUP

A. Fault injection experiments

XRay is based on the KULFI fault injector [4], which
runs on applications compiled into the LLVM [3] bitcode.
KULFI transforms the bitcode representations by wrapping
instructions with code to inserting bit-flips into their outputs
at runtime. KULFI can also be linked with a library to call
functions within the library on every error injection to allow
external tools such as XRay to record information about the
injection. In the program image to be instrumented, each
wrapped LLVM instruction that takes up a certain amount of
space in the program image is referred to as “a static fault
site”; When the program is being executed, each instance of
the wrapped instructions to be executed is referred to as “a
dynamic fault site”. In other words, there is an 1:1 mapping
between program offset and a static fault site, and a 1:1
mapping between time and dynamic fault site.

XRay analyzes an application’s vulnerability to soft errors
by running the target application many times and injecting
an error into each run. Since our focus is on systems where
multiple errors in a given application’s execution are rare,
exactly one error is injected into each run, with the dynamic
fault site chosen uniformly at random. We use two methods
to select the the bits of an instruction’s output that is injected.
In half of the experiments we inject into all bits of a fault
site. In the other half, we inject into randomly chosen bits,
one at a fault site. The purpose of each method is to capture
the effect of Bit ID and time on the outcome of a fault,
respectively, and provide more meaningful input for the model
described in Section V. After fault injection, the application
runs until it exits, at which point XRay collects the results
from this pass. This procedure is repeated until the model
described in Section V determines that the set of experiments
is representative.

B. Target Application

We demonstrate the use of XRay on an application that
uses the Alternating-Direction Method of Multipliers to solve
a Lasso problem, which fits a linear model ŷ = b0 + b1x1 +
b2x2+...+bpxp. In our experiment, the dimentionality of y and
b are 40x1 and 40x500, respectively. Lasso utilizes numerical
routines from the GNU Scientific Library. The amount of error
in the vector output by Lasso is quantified via Root Mean
Standard Deviation (RMSD) of the difference between the

known correct vector and the vector produced by a given run.

It is defined as RMSD =
√∑N

i=1 (xi − x̂i)2/N . Smaller
RMSD values correspond to smaller errors.

III. EXPERIMENTAL RESULTS

This section describes how XRay can be applied to an
application, using Lasso as a representative example. The
figures in this section show the data that would be presented
to users of XRay.

A. Vulnerability of Lasso

Fig. 2. Functions of lasso most dynamic fault sites belong to

Figure 2 identifies the routines that Lasso utilizes most by
showing the number of fault injections that occur in different
routines. The cblas_dsyrk routine computes the Rank-K
matrix update and cblas_dgemv computes Matrix-Vector
Multiplication (MVM). cblas_ddot, cblas_dtrsv and
cblas_dnrm2 are subroutines utilized by the Cholesky
Decomposition routine.

The high-level resilience properties of Lasso are shown
in Figure 3, which presents for each dynamic fault site the
probability that an error injected at that site will result in
Abnormal termination, Erroneous Result or Correct Result.
As marked in the figure, Lasso’s execution consists of three
distinct program phases, each dominated by one linear algebra
kernel: Rank-K update, Cholesky Decomposition and Matrix-
Vector Multiplication.

Fig. 3. Probability of outcome of errors during the lifetime of Lasso and the
routine that dominates running time in each phase.



The above information identifies the dominant routines in
each of Lasso’s distinct program phases. A bit-flip error
in each phase would cause a large fraction of the runs to
terminate abnormally or complete with erroneous results. As
such, making each of Lasso’s dominant routines more resilient
to soft errors can be expected to significantly improve the
resilience of the overall application, while work on other
routines is unlikely to be productive. Section III-B considers
each of these three routines, detailing their fault characteristics
and the impact of deploying resilience techniques on them.

B. Results on individual routines

1) Cholesky Decomposition: Figure 4 details the vulnera-
bility properties of the Cholesky Decomposition (CD) routines,
for both the original and resilient versions. The table at the
top shows the probability that an injected soft error will result
in an Abnormal Termination, Erroneous Result or Correct
Result. The graphs below show more detail about runs with
erroneous results, with the top two graphs focusing on the
original version and the bottom graphs on the resilient version.
The scatterplots on the left show the magnitude of errors in
outputs of CD (quantified as RMSD) on the vertical axis,
with the horizontal axis denoting the Dynamic Fault Site ID
(i.e. injection time). The histogram on the right projects the
scatter plot onto the vertical axis, showing the number of error
injections (horizontal axis) that resulted in an RMSD of a
given magnitude (vertical axis). The vulnerability information
all routines is shown using the same format.

The original CD routine has a built-in assertion that termi-
nates the program when the matrix is not positive-definitive.
Since most injected errors cause the assertion to be violated,
most runs of the original CD are terminated, while those that
complete generally finish with very small errors.

Resilience is applied to CD by observing that CD decom-
poses matrix A into L · LT where L is lower-triangular with
a positive diagonal. This operation must maintain the identity
Ax = L · (LTx) [2], which can be computed in O(n2) time.
This is significantly cheaper than the O(n3) complexity of
the deterministic CD algorithm. GSL implements an iterative
algorithm that runs faster than O(n3) time but our experiments
show that our checker is still significantly faster.

In addition to the algorithm-specific check we also em-
ployed light-weight checkpointing based on the signal han-
dling mechanism in by Linux. We call sigsetjmp before
the program enters the linear algebra kernels and back up
their inputs. When the program encounters an error and is
about to abort, the signal handler is triggered, reverting the
program state to the latest checkpoint and restores the inputs
if possible. All the numerical routines employ this method.

The use of these resilience technique has a significant effect
on the vulnerability of CD to injected errors. Many runs that
would otherwise trigger the assertions finish with very small
errors, which means the damage to the inputs by a single bit
flip error is very small, and can be easily recovered through in-
put backup. Overall, Cholesky Decomposition benefited most
from the generic segmentation fault error handler.

Cholesky Decomposition
Abnormal
Termination

Erroneous
Result

Correct
Result

Original 26,620 (90%) 704 (2%) 2,238 (8%)
Resilient 740 (2%) 178 (1%) 27,294 (97%)

Fig. 4. Error Vulnerability of Cholesky Decomposition, original (top row)
and resilient (bottom row) versions

2) Rank-K Update: Figure 5 shows the soft error vulnera-
bility of both the original and the resilient version of Rank-K
(RK) update. This algorithm computes αA ·AT + βB, where
A and B are matrixes. Its results are checked via the identity
(A·B)·x = A·(B ·x), where x is an error-checking vector (we
use the vector of all 1s). Since checking is done using matrix-
vector multiplication, which takes O(n2) time, as compared
to O(n3) time for RK, this check is very efficient. Like CD,
the error checker for Rank-K update causes many runs with
Erroneous Results to produce Correct Results. However, 15%
of the erroneous runs are not corrected, mainly due to round-
off errors in the checker, since the error magnitudes are small.

3) Matrix-vector multiplication: The Matrix-vector multi-
plication(MVM) operation computes Ax, where A is a matrix
and x is a vector. It is checked using a similar identity
(xTA)x = xT (Ax). The complexity of computing xTA is
O(n2), the same as the original MVM but using additions
rather than multiplications. Since in Lasso MVM is applied
many times to the same matrix with different vector, the vector
xTA can be reused, amortizing the cost of computing it. The
effect of adding resilience of MVM is shown in Figure 6 and
is very similar to RK.

C. Effectiveness of resilience methods on Lasso

Figure 8 shows the effect of adding resilience to the
primary routines of Lasso on the vulnerability of Lasso to
soft errors. Most of the errors in Lasso have been handled by
the fault checkers, with over 94% of abnormal terminations
recovered from and over 90% of the runs completing correctly.
This improvent is the result of the effective protection the
provided by the algorithmic checkers for the three primary



Rank-K update
Abnormal
Termination

Erroneous
Result

Correct
Result

Original 14,434 (50%) 12,865 (45%) 1,416(5%)
Resilient 12,927 (45%) 4,527 (15%) 11,591(40%)

Fig. 5. Error Vulnerability of Rank-K update, original (top row) and resilient
(bottom row) versions

Matrix-vector multiplication
Abnormal
Termination

Erroneous
Result

Correct
Result

Original 25,309(51%) 16,530(33%) 7,992(16%)
Resilient 7,875(11%) 693(1%) 60,960(88%)

Fig. 6. Error Vulnerability of Matrix-Vector Multiplication, original (top row)
and resilient (bottom row) versions

routines in Lasso (RK, MV and Cholsky Decomposition) and
the signal handler’s successful recovery from most abnormal
terminations. This demonstrates the utility of XRay in guiding
application developers towards productive use of resilience
techniques in applicationa and quantifying for them both the
vulnerability of a given application and the degree to which it
improves when various resilience techniques are applied to it.

Lasso
Abnormal
Termination

Erroneous
Result

Correct
Result

Original 52746(55.54%) 11012(11.59%) 31214(32.87%)
Resilient 1424(5.91%) 839(3.48%) 21832(90.60%)

Fig. 7. Fault characteristics of Lasso, without (in row 1) and with fault
tolerance (in row 2)

IV. AN INTUITIVE ACCURACY METRIC

Even in the absence of hardware faults, scientific applica-
tions face many sources error, including those in input data,
discretization error and modeling error. Here in this case study
we relate output errors due to soft faults to measurement errors
in application inputs. The purpose of doing this is 1) it shows
the error sensitivity of different routines to their inputs and
2) it helps users to understand the error magnitude better by
evaluating input errors that are related to a certain RMSD.

Since the input configuration space is astronomically huge,
we perform random local search (by multiplying the values
by random values sampled from a Gaussian distribution with
mean 1 and a standard deviation varying from 1e9 to 1)
upon several input configurations. By performing enough
experiments (50 in this case for mean RMSD) we would be
able to 1) tell how much a program/routine is likely to magnify
errors and 2) how the characteristics of a program and the
routines it consists are related.

As is shown in the figures, there exists a clear linear
relationship between the magnitude of output error, measured
in RMSD, and input error, which depends on the SD of the
noise added to it for MM, RK and MV routines. Input errors
greater than 1e-09 always triggered the assertion failures inside
the CD routine and their results are not shown. A similar linear
relationship is also observable from results from LASSO, as
LASSO spends a considerable amount of CPU time on RK
routine.

V. DETERMINING NUMBER OF EXPERIMENTS

The effect of errors on applications is an inherently complex
process and it is difficult to determine the number of fault



Fig. 8. Mean RMSD caused by adding Gaussian error to inputs

injection experiments needed to adequately characterize it. The
visualizations provided by XRay are a specific choice for how
such effects should be characterized: for each dynamic fault
site classify by Abnormal Termination, Erroneous Results,
Correct Results and when the outcome is Erroneous Results,
compute the magnitude of the error. This section shows how
XRay identifies the number of experiments needed for this
particular characterization.

XRay quantifies the amount of relevant information con-
tained in a set of fault injection experiments by modeling
its visualizations in terms of a statistical model that takes
the available information about a given error injection (e.g.
scatterplot x-axis) and predicts the outcome of the error on
the application (e.g. scatterplot y-axis). The model uses as
input (i) ID of the dynamic fault site, (ii) ID of the static fault
site, (iii) index of the flipped bit in the injected instruction’s
output. It then categorizes runs into the classes, “Abnormal
Termination”, “Erroneous Result” and “Correct Result”. Fi-
nally, for the “Erroneous Result” runs it predicts the RMSD
of the result error. Its structure is illustrated in Figure 9.

Fig. 9. Structure of the XRay evaluation models. Shaded procedures are
where the tree model is applied.

The model’s accuracy is evaluated using two metrics:
• 1st-level categorization model: mis-classification rate.

Since we have 3 categories, a random guess would
result in an error rate of 66.7%. With the knowledge of
the training set, the tree model should produce a much

smaller misclassification rate.
• 2nd-level regression model: R-Square, defined as 1 −∑N

i=1 (ŷi − yi)
2/

∑N
i=1 (yi − ȳ)2, which describes how

much of the variance in the data the model is able to
capture. (The R-square is not applicable to the 1st-level
classification.)

XRay selects the number of experiments incrementally, by
performing more and more experiments and observing the
effect of the additional training data on the accuracy of the
model. For a given sample XRay performs a two-fold cross-
validation for the model (train on half the data then predict
for the other, and vice versa) to obtain the misclassification
rate and R-square. When XRay finds the sample size where
the accuracy of the model stops improving with increasing
sample size, XRay stops the fault injection campaign since this
number of samples is sufficient to characterize the relationship
between the injection properties and application outcomes
considered by XRay. Additional improvements in accuracy
can only come from adding more features into the analysis,
not by running more experiments.

Fig. 10. Trend of R-square and misclassification rate as dataset size grows.
(A random guess = misclassification rate of 66.7%)

Figure 10 illustrates the procedure using experiments on the
Matrix Vector Multiplication routine, executed on 500x500
matrixes. As the number of fault injection experiments in-
creases we see that both the misclassification rate and R-
square drop steadily until they stabilize at a sample size of
49947 experiments. As the data shows this sample size is
sufficient for the purposes of XRay’s visualization and is much
smaller than the ∼ 1e9 experiments required to fully explore
the experimental space. This is the sample size chosen for this
routine and XRay employs the same procedure for all routines
and applications.

VI. CONCLUSION

We present XRay, a tool that supports application develop-
ers in making applications resilient to errors induced by soft
faults. XRay conducts fault injection campains and visually
presents the relationship between the time of a fault and its
effect on application results. This view enables developers
to focus their efforts on the routines that are most critical
to the application’s overall resilience. Further, XRay uses
statistical estimation to identify the number of fault injection
experiments needed to produce accurate visualizations, giv-
ing developers confidence that the visualizations are a valid
description of application behavior.

We demonstrated the use of XRay for the Lasso linear
algebra application. This demonstration showed that



• Algorithm-specific error checkers are effective at detect-
ing erroneous application results, as illustrated in our
experiments with MVM and Rank-K update.

• By recovering from assertion failures and backing up
data, we can salvage many runs of Cholesky Decompo-
sition that would otherwise fail.

• Protection of the key routines identified by XRay signif-
icantly improves the resilience of Lasso to soft faults.
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Evaluating Application Resilience with XRay

Motivation and Goal
We present fault injection framework XRay which is capable of visualizing and analyzing the 
outcome and output errors caused by a bit flip error on a running application, as a foundation for
● Evaluating the effectiveness of algorithmic fault tolerance mechanisms
● Helping to direct fault tolerance efforts to vulnerable code regions for most efficiency
● Revealing tradeoff between performance/efficiency of fault resilience

XRay Workflow

Fault-tolerant application source

GSL_BLAS_DGEMV_FT3(CblasNoTrans, 2.0, A, 
X, 2.0, Y);
...

Original application source

gsl_blas_dgemv(CblasNoTrans, 2.0, A, X, 2.0, Y);

LLVM-based ‘KULFI Fault Injector’

Step 2: Fault Injection Experiments

Dynamic 
Fault Site ID

Static Fault 
Site ID

Bit 
ID

Outcome RMSD

1000 12 7 Faulty 0.002

1010 143 7 No Fault ---

1020 160 7 SegFault ---

Fault Database

Fault Injection Plan

DynFSID = 0 to 32000000000
Interval = 1400000
Bit ID = rand(0, 64)

The characterization shows the probability of different outcomes caused by a single bit-
flip error during the execution of program LASSO throughout its 4.75e+9 dynamic fault 
sites.
The dominant routines in each of the phases match the proportion of CPU time spent in 
each of these routines.
Number of experiments: 94702, ~0.002% of the total number ofpossible faults

Results

Conclusion

Instrumented 
binary

The fault injector enables precise 
control over the location and time 
of fault injected in the resultant 
binaries..

The control over the location of 
faults injected in these binaries 
enables us to obtain statistically 
grounded results in Step 2.

Step 1: Fault Injection Binary Instrumentation

The Result Analyzer gives feedback to the fault injection plan, 
increasing the size of experiments until the accuracy of results 
stop improving (i.e. the relative change of R^2 and 
misclassification rate is < 1%) to make sure we obtain 
statistically grounded results.

Result Analyzer

1. Program Phase and Fault Outcomes

2. Improvement of 
Accuracy

Instrumente
d binary

Fault Tolerance Mechanism 

Check
point

Original Linear 
Algebra Kernel

Algorithmic 
Check

A detects and recover corrupt 
pointers.

B recovers program state upon 
exception.

Input to the routine is backed up 
at C. Also, the checkpoint is 
restored to from B in case of 
run-time exception.

Output of a program are 
checked during D. 
Recomputation takes place if 
error is greater than threshold.

Exception HandlerPointer ReplicationA B

C D
Fault Tolerant 
Kernel

Non fault-tolerant 
application

Fault-tolerant 
application

Evaluation and Comparison

Abnormal 
Termination

Erroneous 
Result

Correct 
Result

Original 52746(55.54%) 11012(11.59%) 31214(32.87%)

Fault-Tolerant 1424(5.91%) 839(3.48%) 21832(90.60%)
Input: 500x800 matrix
Output: 500x1 matrix

The fault-tolerant LASSO contains the 
fault-tolerant versions of routines MM, MV, 
RK and Cholesky-Decomposition, each 
containing signal handlers and algorithmic 
checks.

The signal handlers reduce abnormal 
termination rate from 55.54% to 5.91%.

The algorithmic checks reduced error in the 
outputs in almost all of its execution 
phases.

dsyrk ddot dgemv

Program Phases Overall Time Brakdown

● Identified vulnerable code sections
● Demonstrated the effectiveness of algorithmic fault tolerance techniques on application
● Obtained statistically grounded results on the characteristics of the original/fault tolerant 

application
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